Design de jeux vidéo

CM1-1: Interface homme-machine

Mickaël Martin Nevot

V1.6.0

Cette œuvre est mise à disposition selon les termes de la

<u>licence Creative Commons Attribution – Pas d'Utilisation Commerciale – Partage à l'Identique</u>
3.0 non transposé.

Design de jeux vidéo

- Présentation du cours
- II. IHM
- III. Ergo.
- Marché IV.
- Marketing
- Concept VI.
- Gameplay VII.
- VIII. L&F/LD
- Doc./proto. IX.
- Ludification

Pourquoi « apprendre » l'IHM ?

- « L'IHM ne s'enseigne pas ... elle s'apprend »
 - Ce cours fournit uniquement des ressources, des indications, partage de l'expérience
- Les jeux vidéos sont des IHM!

Homme-environnement?

- Interface/Interaction(s) homme-machine (IHM)
- Intégration homme-système (IHS)
- Interface/interaction personne-machine (IPM)
- Communication(s) homme-machine (CHM)
- Dialogue homme-machine (DHM)
- Etc.

Interface ≠ **interaction**:

- Interface = dispositif d'interaction
- Interaction = aspects de la conception, de l'implémentation et de l'évaluation

Introduction

- Moyens et outils (méthodes, techniques) permettant à un humain de contrôler et communiquer avec une machine
- Systèmes ergonomiques, efficaces et faciles à utiliser
- Approche centrée **utilisateur** (ses besoins) :
 - Le concepteur doit s'adapter à l'utilisateur
- Pluridisciplinaires :
 - Informatique (programmation, reconnaissance vocale, etc.)
 - Sciences humaines et sociales :
 - Psychologie
 - Sociologie
 - Ergonomie (des logiciels et cognitive)
 - Sciences de l'éducation, didactique
 - Etc.

Importance de l'interface

- Point de vue des usagers :
 - Pour l'utilisateur, le produit c'est souvent l'interface!
- Point de vue du projet informatique :
 - De 50 % à 90 % du temps de développement d'un logiciel
 - Étape centrale dans le processus de conception
- Point de vue social et commercial :
 - Souvent plus de 50 % du coût de développement
 - Sur un produit fini : +5 % de satisfaction => +85 % de coût !
 - Peut même parfois coûter des vies!

Paradigmes d'interfaces

- Paradigme **technologique** :
 - A chaque **mécanisme** son contrôle
- Paradigme **métaphorique** :
 - Mimer le comportement de l'interface sur celui d'un objet de la vie réelle
- Paradigme idiomatique :
 - Interface au comportement **stéréotypé**, **cohérent** et donc simple à apprendre mais a priori non calqué sur des objets de la vie réelle :
 - **WIMPS**: windows (fenêtres), icones, menus, pointeurs
 - **WYSIWIG** (what you see is what you get): affichage = résultat

Types d'Interfaces

- Interfaces d'acquisition :
 - Boutons, molettes, *joysticks*, etc.
- Interfaces de **restitution** :
 - Écrans, LED, haut parleur, etc.
- Interfaces combinées :
 - Écrans tactiles, natural user interface (NUI), etc.

Évolution des tendances

- Approche technocentrée :
 - Centrée sur la machine...
 - ... et ses possibilités
 - L'utilisateur doit s'adapter à la machine
- Approche antropocentrée :
 - Centrée sur l'homme...
 - ... et ses besoins
 - La machine doit s'adapter à l'utilisateur
- Approche instrumentale :
 - Co-adaptation des machines et des hommes

Mise en œuvre d'une IHM

- C'est:
 - Difficile, long, coûteux
 - Approche précoce, méthodique, itérative et expérimentale
- Ce n'est pas :
 - Une opération esthétique « de l'écran »
 - Une affaire de goût, de bon sens, d'intuition
- Il faut prendre en compte l'IHM dès le début
- Méthode?
 - Pas toujours de solution prête à l'emploi
 - Des points de repères théoriques, expérimentaux, des savoirfaire des questionnements
 - Trouver des compromis

Méthode LUCID

- Concept de haut niveau, identification de la cible
- Analyse des besoins de l'utilisateur
- Conception initiale de l'interface (avec les utilisateurs)
- Conception incrémentale (ou itérative) de l'interface
- Implantation de l'application, liens entre l'application et l'interface et conception de l'interface « étendue »
- Plan d'évaluation, version beta pour l'utilisateur

LUCID (logical user-centered interactive design) : méthode de conception centrée-utilisateur

- Trouver les **bon interlocuteurs**, prendre en compte :
 - Variabilité, spécificité, différences, catégories d'utilisateurs
- Les utilisateurs n'ont pas toujours conscience de leurs besoins et de ce qu'ils font tous les jours qui est naturel :
 - « Extraction » des données
- Se focaliser sur l'**existant** :
 - Entretiens individuels
 - Personae et scénarios
 - Brainstorming (tous peuvent s'exprimer)
- Communiquer pendant la conception

Personae et scénarios

- Personae: profils d'utilisateurs fictifs
- Scénarios : description d'une utilisation de l'interface

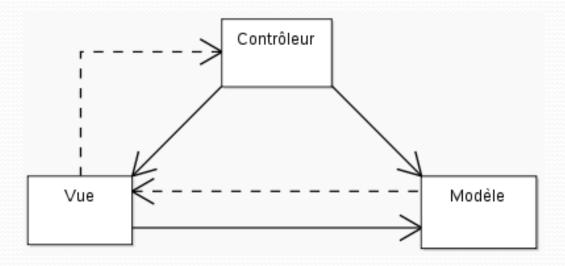
Aide à la discussion et fait apparaître des besoins

Niveaux logiques des interfaces

- Niveau **graphique** (interaction de bas niveau) :
 - Fenêtre, dessin, pointeur, etc.
- Niveau composant (charte graphique):
 - Élément, attribut (actif, grisé, etc.), menu, etc.
- Niveau dialogue (modèles d'interaction) :
 - Feuille à onglets, assistant, menu contextuel, sélecteur d'arborescence, communication inter-application (copier-coller, *drag and drop*, etc.), etc.

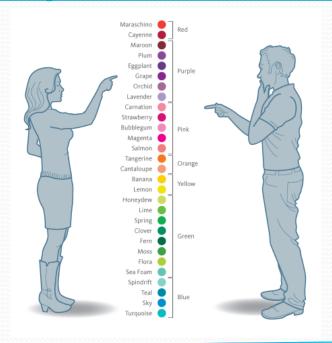
La modalité d'interaction

- Modification dynamique de fonctionnalités
- Modalité constructive (ajout de fonctionnalité) :
 - Exemple : après avoir ouvert un fichier de sauvegarde
- Modalité destructive (suppression de fonctionnalités) :
 - Exemple : lancement d'une impression
- Multimodalité (IHMMM) :
 - Exemples :
 - Clavier + souris
 - Kinect



Modèle-vue-contrôleur

- Architecture et méthode de conception d'IHM
- Modèle : données et leur manipulation
- Vue : élément de l'interface graphique
- Contrôleur : orchestre les actions, synchronise
- MVC 2 : un seul contrôleur



- Caractéristiques de l'utilisateur :
 - Différences **physiques** (temps de réaction) :
 - Age
 - Handicap
 - Framerate:
 - FPS: images par seconde (frames per second)
 - Idées fausses: 24 FPS, 25 FPS, 29.97 FPS, 50 FPS, 64 FPS, etc.

le temps nécessaire pour percevoir et analyser une image dépend de son contexte

- Caractéristiques de l'utilisateur :
 - Différences physiques (considération des couleurs) :
 - Genre
 - https://www.mickael-martin-nevot.com/institutg4/design-de-jeux-video/?:s09-couleur-par-genre.png

- Caractéristiques de l'utilisateur :
 - Connaissances et expériences :
 - Dans le domaine de la tâche (novice, expert, professionnel, etc.)
 - En informatique, sur le système (usage occasionnel, quotidien, etc.)
 - Caractéristiques **psychologiques** :
 - Visuel/auditif, logique/intuitif, analytique/synthétique, etc.
 - Caractéristiques socio-culturelles :
 - Langues et dialectes

Internationalisation et localisation

- Sens d'écriture et format de données (dates, etc.)
- Signification des icônes, des couleurs, etc.

• Contexte :

- Grand public (proposer une prise en main immédiate)
- Loisirs (rendre le produit attrayant)
- Industrie (augmenter la productivité)
- Systèmes critiques (assurer un risque zéro)

Caractéristiques de la tâche :

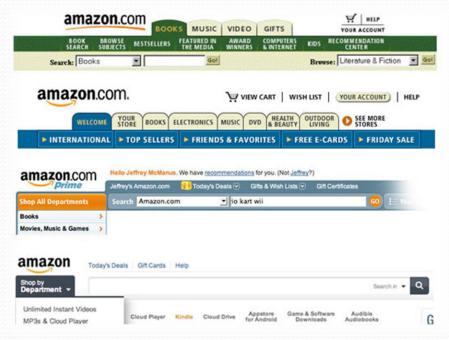
• Répétitive, régulière, occasionnelle, sensible aux modifications de l'environnement, contrainte par le temps, risquée, etc.

Contraintes techniques :

- Plate-forme(s)
- Taille de la mémoire vive
- Écran et capteurs
- Réutilisation de code

Internationalisation et localisation

- L'internationalisation consiste à développer un produit en plusieurs langues ; toutes les parties nécessitant une traduction sont séparées du programme lui-même et sont spécifiquement adaptées au pays de distribution
- La localisation (ou régionalisation) est le procédé par lequel un produit international est adapté aux différentes langues et aux différents pays où il sera disponible ; ceci inclut la traduction et la conversion des données, mais aussi la prise en compte de la culture et des coutumes locales, produisant un produit parfaitement ciblé

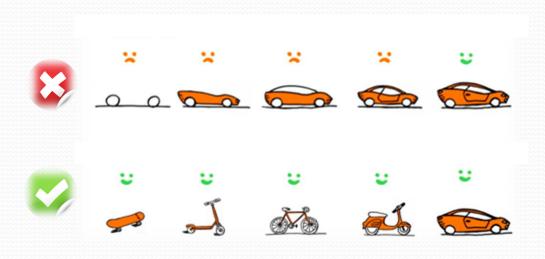

Internationalisation et localisation

Tendance*		Langues		T-Index 2012	Projection 2016	Pays	Population Internet	Taux de PIB pa pénétration tête po Internet Interne	
	1	Anglais		32,3%	24,5%	57 ⊞	550 294 270	29,6%	\$37 613
	2	Chinois Sim	plifié (!)	13,7%	20,2%	2 🕀	539 204 536	40,1%	\$16 269
_	3	Espagnol		7,3%	8,4%	21 🕀	187 097 576	44,7%	\$25 031
	Ti	raduire un site	web dans ces 3 langues v	ous permet	d'atteindre 50	% du pouvoir d	'achat en ligne au r	niveau mondia	ıl.
\downarrow	4	Japonais		6,3%	4,6%	1 ⊞	101 228 736	79,5%	\$39 863
\uparrow	5	Allemand	Accès limite	5,4%	4,6%	4 ⊞	78 651 011	82,7%	\$44 353
\downarrow	6	Français		4,4%	4,1%	22 🖽	73 954 525	21,7%	\$37 764
\uparrow	7	Portugais		3,5%	4,5%	7 ⊞	98 681 001	38,8%	\$22 612
\uparrow	8	Russe (!)		3,3%	4,2%	5 ⊞	83 510 872	45,6%	\$25 478
\uparrow	9	Arabe (!)		3,3%	4,2%	19 🖽	104 701 902	29,8%	\$20 031
\downarrow	10	Italien		2,4%	1,3%	4 ⊞	36 284 479	58,7%	\$41 913
	Tr	aduire un site	web dans ces 10 langues v	ous perme	t d'atteindre 80)% du pouvoir d	l'achat en ligne au	niveau mondi	al.

- T-Index, classement en ligne :
 - http://www.translated.net/fr/classement-langues-t-index

Design itératif

Design itératif


« Même les meilleurs experts en utilisabilité ne peuvent designer de parfaites interfaces utilisateurs en une seule tentative. »

Jakob Nielsen

Produit minimum viable (MVP)

- Minimum viable product (MVP)
- Stratégie de développement de produit

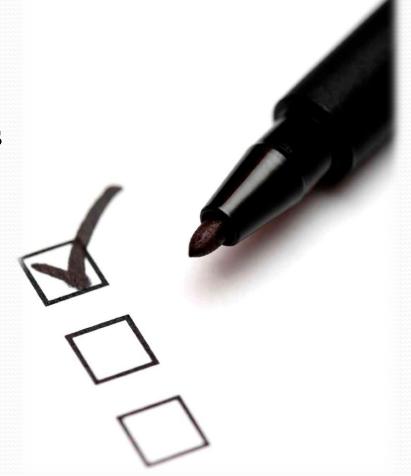
Produit

« Résumé concis du plus petit groupe de fonctionnalités permettant à un produit de fonctionner de manière autonome tout en résolvant au moins le problème auquel il s'adresse et en démontrant la valeur du produit. »

- Steve Blank

Évaluation d'IHM

- Évaluation durant toute de la création du produit :
 - À l'étape de conception
 - À l'étape de test
- Méthodes **formatives** (sans utilisateur):
 - Ballade cognitive (préparation, évaluation, interprétation)
 - Analyse de tâche
 - Évaluation heuristique
- Méthodes sommatives (avec utilisateur)


Évaluation heuristique

- L'état du système doit être visible
- Le système doit être le reflet du monde réel
- L'utilisateur doit garder le contrôle et être libre
- Être cohérent et respecter les standards
- Prévenir les erreurs
- Reconnaître plutôt que se rappeler
- Flexibilité et efficacité
- Esthétisme et minimalisme
- Aider l'utilisateur face aux erreurs
- Aide en ligne et documentation

Évaluation sommative

- Évaluation directe :
 - Séance d'observation
- Évaluation indirecte :
 - Forums / courriers électroniques
 - Test papier

Séance d'observation

- Avant la début de la séance :
 - Se présenter et décrire l'objectif de l'observation
 - Signaler qu'on peut renoncer au test à tout instant
 - Décrire les équipements présents dans la salle
 - Décrire ce qu'est attendu des participants :
 - Fiche de scénario
 - Questionnaire
 - Expliquer « comment réfléchir efficacement » (durant la séance)
 - Signaler qu'aucune aide ne sera fournie après le démarrage
 - Demander s'il y a des questions préalables
- Durant la séance :
 - **Observer** (fiche de suivi)
 - Conclure l'observation
- Après la séance :
 - Exploiter les résultats

Séance d'observation

Hôtesse

- Vérifie les bonnes conditions de l'utilisateur
- Exprime ses pensées

Commentateur

 Met en avant les points cruciaux pour les observateurs

Scientifique

 S'assure que ce qui doit être testé est testé correctement

Aller plus loin

- Type d'utilisateur d'IHM
- Étude des nouvelles IHM et IHM futures (informatique nomade, ubiquitaire, vestimentaire, etc.)
- Simulation et émulation
- Théorie des sondages

Liens

- Documents électroniques :
 - http://www.quora.com/What-are-the-basicprinciples-of-NUI-Natural-User-Interface-design
 - http://www.hteumeuleu.fr/ode-au-design-iteratif/
- Documents classiques :
 - Cours :
 - Cédric Soubrié. Prise en compte du facteur humain.
 - Alain Giboin. *Ergonomie des IHM*.
 - Stéphanie Jean-Daubias. Introduction à l'IHM.
 - Frédéric Devernay. Conception et évaluation d'IHM.
 - Elizabeth Delozanne. IHM.
 - Yannick Boursier. Interface Homme-Machine.
 - Mountaz Hascoët. *Interaction Homme-Machine*.

Crédits

Relecteurs

Vincent Artaud

Cours en ligne sur : www.mickael-martin-nevot.com

